In-Vivo Segmentation of the Human Nucleus Accumbens Using Diffusion Tensor Imaging and Probabilistic Tractography

Ausaf A. Bari MD PhD; Zhong Zheng; Antonio DeSalles MD PhD; Nader Pouratian MD, PhD
Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California

Introduction

- The nucleus accumbens plays a central role in reward processing and addiction. Therefore, DBS of the nucleus accumbens may be effective in the treatment of depression and addiction.
- The accumbens is functionally and anatomically divided into core and shell subregions.
- Probabilistic tractography has been previously used to segment subcortical structures into functionally distinct regions.
- We now apply this technique to segment the nucleus accumbens in vivo in humans.

Nucleus Accumbens Seed Mask

FreSurfer Automated Parcellation of Nucleus Accumbens (orange areas)

Methods

- 70 weighted MRI images were acquired in 7 healthy volunteers.
- A diffusion MRI was obtained.
- Seed masks for the nucleus accumbens were generated using FreSurfer (http://surfer.nmr.mgh.harvard.edu).
- Probabilistic tractography and diffusion imaging were performed using FSL (http://www.fmrib.ox.ac.uk/fsl).
- The probability of connectivity between seed masks and the entire brain was determined and subjected to k-means clustering analysis. We set the number of clusters to 2.

Nucleus Accumbens Connectivity

Representative subject with high level of connectivity with orbitofrontal cortex shown in blue.

Results

The nucleus accumbens was segmented into two distinct subregions using probabilistic tractography.

These regions may reflect the underlying core vs. shell dichotomy of the nucleus accumbens.

Overall the nucleus accumbens showed strong connectivity with prefrontal and orbitofrontal cortex.

Conclusions

DTI tractography can be used to derive an in vivo patient-specific connectivity map of the human nucleus accumbens.

This map may be used in the future for planning and refinement of DBS within the nucleus accumbens.

In addition, this technique provides a new way to noninvasively study the anatomy and connectivity of the nucleus accumbens in humans for the first time.

The connectivity seen in this study may reflect the known dichotomy of the nucleus accumbens into core and shell subregions.

Learning Objectives

By the conclusion of this session, participants should be able to 1) Describe the importance of the nucleus accumbens in behavior 2) Describe the connectivity of the nucleus accumbens 3) Discuss the use of probabilistic tractography to study the connectivity of the nucleus accumbens.

Selected References

Introduction

• The nucleus accumbens plays a central role in reward processing and addiction. Therefore, DBS of the nucleus accumbens may be effective in the treatment of depression and addiction.

• The accumbens has been functionally and anatomically divided into core and shell subregions.

• Probabilistic tractography has been used previously to segment subcortical structures into functionally distinct regions.

• We now apply this technique to segment the nucleus accumbens \textit{in vivo} in humans.
Methods

- T1-weighted MRI images were acquired in 7 healthy volunteers.

- 20-direction DTI was obtained.

- Seed masks for the nucleus accumbens were generated using FreeSurfer (http://surfer.nmr.mgh.harvard.edu).

- Probabilistic tractography and diffusion imaging were performed using FSL (http://www.fmrib.ox.ac.uk/fsl).

- The probability of connectivity between seed voxels and the whole brain was determined and subjected to k-means clustering analysis. We set the number of clusters to 2.
Nucleus Accumbens Seed Mask

FreeSurfer Automated Parcellation of Nucleus Accumbens (orange areas)
K-Means Clustering
Nucleus Accumbens Connectivity

Representative subject with high level of connectivity with orbitofrontal cortex shown in blue.
Segmentation of the nucleus accumbens into 2 distinct regions averaged over subjects and displayed in MNI space.
Results

The nucleus accumbens was segmented into two distinct subregions using probabilistic tractography.

These regions may reflect the underlying core vs. shell dichotomy of the nucleus accumbens.

Overall the nucleus accumbens showed strong connectivity with prefrontal and orbitofrontal cortex.
Conclusions

DTI-based tractography can be used to derive an in-vivo patient-specific connectivity map of the human nucleus accumbens.

This map may be used in the future for planning and refinement of DBS within the nucleus accumbens.

In addition, this technique provides allows us to noninvasively study the anatomy and connectivity the nucleus accumbens in humans for the first time.

The connectivity seen in this study may reflect the known dichotomy of the nucleus accumbens into core and shell subregions.
Selected References

